Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 517
Filter
2.
Nature ; 628(8009): 765-770, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658685

ABSTRACT

Solar fuels offer a promising approach to provide sustainable fuels by harnessing sunlight1,2. Following a decade of advancement, Cu2O photocathodes are capable of delivering a performance comparable to that of photoelectrodes with established photovoltaic materials3-5. However, considerable bulk charge carrier recombination that is poorly understood still limits further advances in performance6. Here we demonstrate performance of Cu2O photocathodes beyond the state-of-the-art by exploiting a new conceptual understanding of carrier recombination and transport in single-crystal Cu2O thin films. Using ambient liquid-phase epitaxy, we present a new method to grow single-crystal Cu2O samples with three crystal orientations. Broadband femtosecond transient reflection spectroscopy measurements were used to quantify anisotropic optoelectronic properties, through which the carrier mobility along the [111] direction was found to be an order of magnitude higher than those along other orientations. Driven by these findings, we developed a polycrystalline Cu2O photocathode with an extraordinarily pure (111) orientation and (111) terminating facets using a simple and low-cost method, which delivers 7 mA cm-2 current density (more than 70% improvement compared to that of state-of-the-art electrodeposited devices) at 0.5 V versus a reversible hydrogen electrode under air mass 1.5 G illumination, and stable operation over at least 120 h.

3.
Adv Mater ; : e2403403, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38631689

ABSTRACT

Efficient and robust n-i-p perovskite solar cells necessitate superior organic hole-transport materials with both mechanical and electronic prowess. Deciphering the structure-property relationship of these materials is crucial for practical perovskite solar cell applications. Through direct arylation, two high glass transition temperature molecular semiconductors, DBC-ETPA (202 °C) and TPE-ETPA (180 °C) are synthesized, using dibenzo[g,p]chrysene (DBC) and 1,1,2,2-tetraphenylethene (TPE) tetrabromides with triphenylene-ethylenedioxythiophene-dimethoxytriphenylamine (ETPA). In comparison to spiro-OMeTAD, both semiconductors exhibit shallower HOMO energy levels, resulting in increased hole densities (generated by air oxidation doping) and accelerated hole extraction from photoexcited perovskite. Experimental and theoretical studies highlight the more rigid DBC core, enhancing hole mobility due to reduced reorganization energy and lower energy disorder. Importantly, DBC-ETPA possesses a higher cohesive energy density, leading to lower ion diffusion coefficients and higher Young's moduli. Leveraging these attributes, DBC-ETPA is employed as the primary hole-transport layer component, yielding perovskite solar cells with an average efficiency of 24.5%, surpassing spiro-OMeTAD reference cells (24.0%). Furthermore, DBC-ETPA-based cells exhibit superior operational stability and 85 °C thermal storage stability.

4.
Adv Mater ; 36(13): e2303869, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37632843

ABSTRACT

High-performance perovskite solar cells (PSCs) typically require interfacial passivation, yet this is challenging for the buried interface, owing to the dissolution of passivation agents during the deposition of perovskites. Here, this limitation is overcome with in situ buried-interface passivation-achieved via directly adding a cyanoacrylic-acid-based molecular additive, namely BT-T, into the perovskite precursor solution. Classical and ab initio molecular dynamics simulations reveal that BT-T spontaneously may self-assemble at the buried interface during the formation of the perovskite layer on a nickel oxide hole-transporting layer. The preferential buried-interface passivation results in facilitated hole transfer and suppressed charge recombination. In addition, residual BT-T molecules in the perovskite layer enhance its stability and homogeneity. A power-conversion efficiency (PCE) of 23.48% for 1.0 cm2 inverted-structure PSCs is reported. The encapsulated PSC retains 95.4% of its initial PCE following 1960 h maximum-power-point tracking under continuous light illumination at 65 °C (i.e., ISOS-L-2I protocol). The demonstration of operating-stable PSCs under accelerated ageing conditions represents a step closer to the commercialization of this emerging technology.

5.
J Am Chem Soc ; 145(51): 27939-27949, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38090815

ABSTRACT

Photoelectrochemical carbon dioxide reduction (PEC-CO2R) represents a promising approach for producing renewable fuels and chemicals using solar energy. However, attaining even modest solar-to-fuel (STF) conversion efficiency often necessitates the use of costly semiconductors and noble-metal catalysts. Herein, we present a Cu2O/Ga2O3/TiO2 photocathode modified with Sn/SnOx catalysts through a simple photoelectrodeposition method. It achieves a remarkable half-cell STF efficiency of ∼0.31% for the CO2R in aqueous KHCO3 electrolyte, under AM 1.5 G illumination. The system enables efficient production of syngas (FE: ∼62%, CO/H2 ≈ 1:2) and formate (FE: ∼38%) with a consistent selectivity over a wide potential range, from +0.34 to -0.16 V vs the reversible hydrogen electrode. We ascribe the observed performance to the favorable optoelectronic characteristics of our Cu2O heterostructure and the efficient Sn/SnOx catalysts incorporated in the PEC-CO2R reactions. Through comprehensive experimental investigations, we elucidate the indispensable role of Cu2O buried p-n junctions in generating a high photovoltage (∼1 V) and enabling efficient bulk charge separation (up to ∼70% efficiency). Meanwhile, we discover that the deposited Sn/SnOx catalysts have critical dual effects on the overall performance of the PEC devices, serving as active CO2R catalysts as well as the semiconductor front contact. It could facilitate interfacial electron transfer between the catalysts and the semiconductor device for CO2R by establishing a barrier-free ohmic contact.

6.
Nature ; 624(7991): 289-294, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37871614

ABSTRACT

Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts1-3. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses4,5. Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate that cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, and thereby minimizing interfacial recombination and improving electronic structures. We report a laboratory-measured power conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley-Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65 °C and 50% relative humidity following more than 1,000 h of maximum power point tracking under 1 sun illumination. This represents one of the most stable PSCs subjected to accelerated ageing: achieved with a PCE surpassing 24%. The engineering of phosphonic acid adsorption on textured substrates offers a promising avenue for efficient and stable PSCs. It is also anticipated to benefit other optoelectronic devices that require light management.

7.
ACS Mater Lett ; 5(9): 2408-2421, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37680545

ABSTRACT

High power conversion efficiencies (PCE), low energy payback time (EPBT), and low manufacturing costs render perovskite solar cells (PSCs) competitive; however, a relatively low operational stability impedes their large-scale deployment. In addition, state-of-the-art PSCs are made of expensive materials, including the organic hole transport materials (HTMs) and the noble metals used as the charge collection electrode, which induce degradation in PSCs. Thus, developing inexpensive alternatives is crucial to fostering the transition from academic research to industrial development. Combining a carbon-based electrode with an inorganic HTM has shown the highest potential and should replace noble metals and organic HTMs. In this review, we illustrate the incorporation of a carbon layer as a back contact instead of noble metals and inorganic HTMs instead of organic ones as two cornerstones for achieving optimal stability and economic viability for PSCs. We discuss the primary considerations for the selection of the absorbing layer as well as the electron-transporting layer to be compatible with the champion designs and ultimate architecture for single-junction PSCs. More studies regarding the long-term stability are still required. Using the recommended device architecture presented in this work would pave the way toward constructing low-cost and stable PSCs.

8.
Nature ; 622(7983): 493-498, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37557914

ABSTRACT

Lead halide perovskite light-emitting diodes (PeLEDs) have demonstrated remarkable optoelectronic performance1-3. However, there are potential toxicity issues with lead4,5 and removing lead from the best-performing PeLEDs-without compromising their high external quantum efficiencies-remains a challenge. Here we report a tautomeric-mixture-coordination-induced electron localization strategy to stabilize the lead-free tin perovskite TEA2SnI4 (TEAI is 2-thiopheneethylammonium iodide) by incorporating cyanuric acid. We demonstrate that a crucial function of the coordination is to amplify the electronic effects, even for those Sn atoms that aren't strongly bonded with cyanuric acid owing to the formation of hydrogen-bonded tautomeric dimer and trimer superstructures on the perovskite surface. This electron localization weakens adverse effects from Anderson localization and improves ordering in the crystal structure of TEA2SnI4. These factors result in a two-orders-of-magnitude reduction in the non-radiative recombination capture coefficient and an approximately twofold enhancement in the exciton binding energy. Our lead-free PeLED has an external quantum efficiency of up to 20.29%, representing a performance comparable to that of state-of-the-art lead-containing PeLEDs6-12. We anticipate that these findings will provide insights into the stabilization of Sn(II) perovskites and further the development of lead-free perovskite applications.

9.
Science ; 381(6654): 209-215, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37440655

ABSTRACT

Perovskite solar cells (PSCs) consisting of interfacial two- and three-dimensional heterostructures that incorporate ammonium ligand intercalation have enabled rapid progress toward the goal of uniting performance with stability. However, as the field continues to seek ever-higher durability, additional tools that avoid progressive ligand intercalation are needed to minimize degradation at high temperatures. We used ammonium ligands that are nonreactive with the bulk of perovskites and investigated a library that varies ligand molecular structure systematically. We found that fluorinated aniliniums offer interfacial passivation and simultaneously minimize reactivity with perovskites. Using this approach, we report a certified quasi-steady-state power-conversion efficiency of 24.09% for inverted-structure PSCs. In an encapsulated device operating at 85°C and 50% relative humidity, we document a 1560-hour T85 at maximum power point under 1-sun illumination.

10.
Nat Rev Chem ; 7(9): 632-652, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37464018

ABSTRACT

There is an ongoing global effort to advance emerging perovskite solar cells (PSCs), and many of these endeavours are focused on developing new compositions, processing methods and passivation strategies. In particular, the use of passivators to reduce the defects in perovskite materials has been demonstrated to be an effective approach for enhancing the photovoltaic performance and long-term stability of PSCs. Organic passivators have received increasing attention since the late 2010s as their structures and properties can readily be modified. First, this Review discusses the main types of defect in perovskite materials and reviews their properties. We examine the deleterious impact of defects on device efficiency and stability and highlight how defects facilitate extrinsic degradation pathways. Second, the proven use of different passivator designs to mitigate these negative effects is discussed, and possible defect passivation mechanisms are presented. Finally, we propose four specific directions for future research, which, in our opinion, will be crucial for unlocking the full potential of PSCs using the concept of defect passivation.

11.
Adv Mater ; 35(31): e2210106, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37286198

ABSTRACT

Metal halide perovskites are ideal candidates for indoor photovoltaics (IPVs) because of their easy-to-adjust bandgaps, which can be designed to cover the spectrum of any artificial light source. However, the serious non-radiative carrier recombination under low light illumination restrains the application of perovskite-based IPVs (PIPVs). Herein, polar molecules of amino naphthalene sulfonates are employed to functionalize the TiO2 substrate, anchoring the CsPbI3 perovskite crystal grains with a strong ion-dipole interaction between the molecule-level polar interlayer and the ionic perovskite film. The resulting high-quality CsPbI3 films with the merit of defect-immunity and large shunt resistance under low light conditions enable the corresponding PIPVs with an indoor power conversion efficiency of up to 41.2% (Pin : 334.11 µW cm-2 , Pout : 137.66 µW cm-2 ) under illumination from a commonly used indoor light-emitting diode light source (2956 K, 1062 lux). Furthermore, the device also achieves efficiencies of 29.45% (Pout : 9.80 µW cm-2 ) and 32.54% (Pout : 54.34 µW cm-2 ) at 106 (Pin : 33.84 µW cm-2 ) and 522 lux (Pin : 168.21 µW cm-2 ), respectively.

12.
Adv Sci (Weinh) ; 10(23): e2302549, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37259683

ABSTRACT

The industrialization of perovskite solar cells requires adequate materials and processes to make them economically viable and environmentally sustainable. Despite promising results in terms of power conversion efficiency and operational stability, several hole-transport layers currently in use still need to prove their industrial feasibility. This work demonstrates the use of nanocrystalline nickel oxide produced through flash infrared annealing (FIRA), considerably reducing the materials cost, production time, energy, and the amount of solvents required for the hole transport layer. X-ray photoelectron spectroscopy reveals a better conversion to nickel oxide and a higher oxygen-to-nickel ratio for the FIRA films as compared to control annealing methods, resulting in higher device efficiency and operational stability. Planar inverted solar cells produced with triple cation perovskite absorber result in 16.7% power conversion efficiency for 1 cm2 devices, and 15.9% averaged over an area of 17 cm2 .

13.
J Phys Chem Lett ; 14(27): 6248-6254, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37390042

ABSTRACT

Organic materials can tune the optical properties in layered (2D) hybrid perovskites, although their impact on photophysics is often overlooked. Here, we use transient absorption spectroscopy to probe the Dion-Jacobson (DJ) and Ruddlesden-Popper (RP) 2D perovskite phases. We show the formation of charge transfer excitons in DJ phases, resulting in a photoinduced Stark effect which is shown to be dependent on the spacer size. By using electroabsorption spectroscopy, we quantify the strength of the photoinduced electric field, while temperature-dependent measurements demonstrate new features in the transient spectra of RP phases at low temperatures resulting from the quantum-confined Stark effect. This study reveals the impact of spacer size and perovskite phase configuration on charge transfer excitons in 2D perovskites of interest to their advanced material design.

14.
Nature ; 617(7962): 687-695, 2023 05.
Article in English | MEDLINE | ID: mdl-37225881

ABSTRACT

Lead halide perovskites are promising semiconducting materials for solar energy harvesting. However, the presence of heavy-metal lead ions is problematic when considering potential harmful leakage into the environment from broken cells and also from a public acceptance point of view. Moreover, strict legislation on the use of lead around the world has driven innovation in the development of strategies for recycling end-of-life products by means of environmentally friendly and cost-effective routes. Lead immobilization is a strategy to transform water-soluble lead ions into insoluble, nonbioavailable and nontransportable forms over large pH and temperature ranges and to suppress lead leakage if the devices are damaged. An ideal methodology should ensure sufficient lead-chelating capability without substantially influencing the device performance, production cost and recycling. Here we analyse chemical approaches to immobilize Pb2+ from perovskite solar cells, such as grain isolation, lead complexation, structure integration and adsorption of leaked lead, based on their feasibility to suppress lead leakage to a minimal level. We highlight the need for a standard lead-leakage test and related mathematical model to be established for the reliable evaluation of the potential environmental risk of perovskite optoelectronics.

15.
ACS Energy Lett ; 8(4): 1645-1651, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37090168

ABSTRACT

Photoelectrochemical (PEC) CO2 reduction has received considerable attention given the inherent sustainability and simplicity of directly converting solar energy into carbon-based chemical fuels. However, complex photocathode architectures with protecting layers and cocatalysts are typically needed for selective and stable operation. We report herein that bare CuIn0.3Ga0.7S2 photocathodes can drive the PEC CO2 reduction with a benchmarking 1 Sun photocurrent density of over 2 mA/cm2 (at -2 V vs Fc+/Fc) and a product selectivity of up to 87% for CO (CO/all products) production while also displaying long-term stability for syngas production (over 44 h). Importantly, spectroelectrochemical analysis using PEC impedance spectroscopy (PEIS) and intensity-modulated photocurrent spectroscopy (IMPS) complements PEC data to reveal that tailoring the proton donor ability of the electrolyte is crucial for enhancing the performance, selectivity, and durability of the photocathode. When a moderate amount of protons is present, the density of photogenerated charges accumulated at the interface drops significantly, suggesting a faster charge transfer process. However, with a high concentration of proton donors, the H2 evolution reaction is preferred.

16.
Nat Chem ; 15(5): 705-713, 2023 May.
Article in English | MEDLINE | ID: mdl-37024716

ABSTRACT

The conversion of carbon dioxide to value-added products using renewable electricity would potentially help to address current climate concerns. The electrochemical reduction of carbon dioxide to propylene, a critical feedstock, requires multiple C-C coupling steps with the transfer of 18 electrons per propylene molecule, and hence is kinetically sluggish. Here we present the electrosynthesis of propylene from carbon dioxide on copper nanocrystals with a peak geometric current density of -5.5 mA cm-2. The metallic copper nanocrystals formed from CuCl precursor present preponderant Cu(100) and Cu(111) facets, likely to favour the adsorption of key *C1 and *C2 intermediates. Strikingly, the production rate of propylene drops substantially when carbon monoxide is used as the reactant. From the electrochemical reduction of isotope-labelled carbon dioxide mixed with carbon monoxide, we infer that the key step for propylene formation is probably the coupling between adsorbed/molecular carbon dioxide or carboxyl with the *C2 intermediates that are involved in the ethylene pathway.

17.
Adv Mater ; 35(28): e2211619, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37021402

ABSTRACT

The defects located at the interfaces and grain boundaries (GBs) of perovskite films are detrimental to the photovoltaic performance and stability of perovskite solar cells. Manipulating the perovskite crystallization process and tailoring the interfaces with molecular passivators are the main effective strategies to mitigate performance loss and instability. Herein, a new strategy is reported to manipulate the crystallization process of FAPbI3 -rich perovskite by incorporating a small amount of alkali-functionalized polymers into the antisolvent solution. The synergic effects of the alkali cations and poly(acrylic acid) anion effectively passivate the defects on the surface and GBs of perovskite films. As a result, the rubidium (Rb)-functionalized poly(acrylic acid) significantly improves the power conversion efficiency of FAPbI3 perovskite solar cells to approaching 25% and reduces the risk of lead ion (Pb2+ ) leakage continuously via the strong interaction between CO bonds and Pb2+ . In addition, the unencapsulated device shows enhanced operational stability, retaining 80% of its initial efficiency after 500 h operation at maximum power point under one-sun illumination.


Subject(s)
Alkalies , Lead , Crystallization , Polymers
18.
Nature ; 618(7963): 74-79, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36977463

ABSTRACT

The tunable bandgaps and facile fabrication of perovskites make them attractive for multi-junction photovoltaics1,2. However, light-induced phase segregation limits their efficiency and stability3-5: this occurs in wide-bandgap (>1.65 electron volts) iodide/bromide mixed perovskite absorbers, and becomes even more acute in the top cells of triple-junction solar photovoltaics that require a fully 2.0-electron-volt bandgap absorber2,6. Here we report that lattice distortion in iodide/bromide mixed perovskites is correlated with the suppression of phase segregation, generating an increased ion-migration energy barrier arising from the decreased average interatomic distance between the A-site cation and iodide. Using an approximately 2.0-electron-volt rubidium/caesium mixed-cation inorganic perovskite with large lattice distortion in the top subcell, we fabricated all-perovskite triple-junction solar cells and achieved an efficiency of 24.3 per cent (23.3 per cent certified quasi-steady-state efficiency) with an open-circuit voltage of 3.21 volts. This is, to our knowledge, the first reported certified efficiency for perovskite-based triple-junction solar cells. The triple-junction devices retain 80 per cent of their initial efficiency following 420 hours of operation at the maximum power point.

19.
Angew Chem Int Ed Engl ; 62(17): e202217253, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-36744542

ABSTRACT

Two-dimensional (2D) materials catalysts provide an atomic-scale view on a fascinating arena for understanding the mechanism of electrocatalytic carbon dioxide reduction (CO2 ECR). Here, we successfully exfoliated both layered and nonlayered ultra-thin metal phosphorous trichalcogenides (MPCh3 ) nanosheets via wet grinding exfoliation (WGE), and systematically investigated the mechanism of MPCh3 as catalysts for CO2 ECR. Unlike the layered CoPS3 and NiPS3 nanosheets, the active Sn atoms tend to be exposed on the surfaces of nonlayered SnPS3 nanosheets. Correspondingly, the nonlayered SnPS3 nanosheets exhibit clearly improved catalytic activity, showing formic acid selectivity up to 31.6 % with -7.51 mA cm-2 at -0.65 V vs. RHE. The enhanced catalytic performance can be attributed to the formation of HCOO* via the first proton-electron pair addition on the SnPS3 surface. These results provide a new avenue to understand the novel CO2 ECR mechanism of Sn-based and MPCh3 -based catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...